48宮坂 等47Hitoshi MIYASAKA導電性分子磁石の外部摂動による機能制御(2012年採択)Control of Functions in Conductive Molecular Magnets by External Stimuli(Project 2012)size of the cortical primordium due to precocious transition from the neurogenic fate to the gliogenic fate of NSPCs. Lipidomics analyses revealed n-6 PUFA-derived epoxy metabolites, one of which actually induced gliogenesis. These n-6 excess/n-3 deficient mice showed more anxiety even after raised postnatally with con-trol diet.本研究では,金属錯体を基に構築される配位格子の「格子」とそれに囲まれる「空間」に着目し,磁気秩序,電子輸送,誘電応答のような“物理的応答”を制御する「格子」の設計に加え,ガス・小分子やイオンの化学的吸脱着(“化学反応”)を司る「空間」を格子との協奏場として捉えることにより,格子と空間の物理-化学挙動が協奏的多重機能を実現する分子材料の開発を目的とした.そのような高感度な格子と空間を創造するため,電子ドナー(D)であるpaddlewheel型ルテニウム二核(II, II)錯体と,電子アクセプター(A)である有機アクセプター分子TCNQやDCNQIとの電荷移動型多次元格子(D/A-MOF)を設計し,D/A系の導電性分子磁石や高酸化還元能を有する多孔性分子格子材料を開発した.D/A両分子の分子修飾により,単にD/A格子内の電荷移動・電子移動を調整しうるばかりでなく,それらに基づく磁気秩序や電子導電性をも示す多孔性の分子材料でもある.研究期間内では,格子内の電荷移動や電子移動を調整しつつ,ゲスト分子と格子間の電荷分極や電子移動に基づくゲスト分子の電子的活性化と格子の物性制御を行った.その結果,多種多様の分子磁石に加え,多孔性のD2A型磁性体の開発に道筋を付けることに成功し,また,電子ドナー性を高めたドナー型一次元化合物で,一酸化窒素(NO)に対し,ホスト・ゲスト相互作用に基づく選択的な吸脱着を見出した.また,その相互作用による電気伝導性の向上やゲート開閉型の吸脱着を構造変化に起因する誘電応答として捉えることに成功した.The aim of the research project is to establish multi-functional molecular materials using electron-donor/-ac-ceptor-based conductive molecular magnets or highly redox-active molecular framework compounds, in which not only ʻphysical responsesʼ such as magnetic ordering, electron transporting, and dielectric responses resulted from their frameworks, but also ʻchemical reactionsʼ involving chemical adsorption/desorption of gaseous molecules in nano-sized pores made by frameworks are synergistically functioned. The reaction of carboxylate-bridged paddlewheel-type diruthenium(II, II) complexes, which act as electron-donors tuned by the modification of carboxylate ligands, with well-known TCNQ and DCNQI organic electron-acceptors al-lows the construction of charge-transfer donor/acceptor multi-dimensional metal-organic frameworks (i.e., D/A-MOFs). These D/A-MOFs are redox-active porous materials, so the activation of redox-active guest mole-cules inside of pores by interacting with redox-active frameworks could be expected, as well as the modifica-tion of electronic state of frameworks followed by the tune of physical properties. Indeed, we discovered a series of electron-donor-type chain compounds that exhibit tunable selective NO adsorption behavior, and succeeded to obtain electronic signals on gate-opening gas adsorption transitions and on chemical interactions caused by host-guest interactions by applying ac electric fields in situ gas handling.
元のページ ../index.html#52