岡本 晃充37Akimitsu OKAMOTO佐藤 純38Makoto SATO合成化学とゲノム医科学の融合によるがん由来遊離メチル化DNA回収のための機能性核酸修飾担体の開発 (2015年採択)Development of functional nucleic acid-modified supports for cancer-derived cell-free methylated DNA recovery by fusion of synthetic chemistry and genome medical science (Project 2015)数理科学と発生生物学の融合による「分化の波」の伝播機構の解明 (2015年採択)Mechanisms of the Wave of Differentiation by Integrative Research of Mathematical Science and Developmental Biology (Project 2015)39I aimed at developing micro human models involving various biological processes by integrating human tis-sues and organs into microfluidic devices for pharmacokinetic studies. In this research, I focused on a devel-opment of 3D tissue of muscle and fat having capillary network inside and capillary network built in a gel. By using commercially available human primary cells, micro-3D tissues having capillary vessel network in-side were realized. The results of the work are applicable to various fields including drug development and risk evaluation of toxic chemicals and its economic effects will be great in future.がん由来遊離メチル化DNAを効率的に回収するために,特定の配列のメチル化に対して反応する人工核酸を担体に結合して,その反応性とメチル化特異性を検討した.その結果,人工核酸結合担体は,特定の配列のメチル化DNAを捕捉された.メチル化していないDNAや異なる配列を持つメチル化DNAとの反応は観察されなかった.I have attached an artificial nucleic acid, which is reactive to a specific methylated sequence, to solid supports and investigated the reactivity and methylation specificity to efficiently recover cell-free methylated cancer DNA. As a result, the solid support modified with an artificial nucleic acid captured a specific methylated DNA. I did not observed the reaction with unmethylated DNA sequences or different methylated DNA se-quences.様々な生命現象は多様なシグナル伝達によって制御されている.しかし,複数のシグナル系が互いにフィードバックしている場合,その挙動を直感的に理解することは非常に困難であり,シグナル伝達の働きを数理モデル化して定量的な理解を目指すアプローチが必要不可欠となる.本研究ではショウジョウバエ脳の視覚中枢において見られる「分化の波」をモデルとし,数理モデリングによってシグナル伝達のシステムとしての挙動を解析した.さらに数理モデルによる予測をもとに,遺伝学的手法によってシグナルの働きを操作し,分化パターンを人工的に制御することを目指した.Many biological phenomena are regulated by wide variety of signaling systems. However, when multiple sig-naling pathways mutually regulate each other forming a feed-back loop, it is very difficult to understand the behavior of the entire system as a whole. In this research, we utilize the wave of differentiation found in the developing fly brain as a model to investigate the behavior and role of a system containing multiple signaling pathways. For this purpose, we combined mathematical modeling and molecular genetic experiments. A mathematical model was formulated based on the gene regulatory network, and the prediction of the mathe-matical model was validated by manipulating signaling activity and generating an artificial pattern in vivo.
元のページ ../index.html#43