旭硝子財団助成研究成果報告2019
28/88

56carboxylic acids by using paired electrolysis. During the course of our studies, we have established and de-veloped three points to be emphasized. The first is development of the new divided electrochemical cell for the realization of solution mixing after the paired electrolysis. The second is development of the monitoring system for the anodic bromination of carbon-carbon triple bonds by using the recycling Raman spectroscopy, - were elucidated. The third is development of the sequential in which the reaction behaviors of Br2 and Br3addition of ArS- for the dibrominated intermediates, when ArSH or ArSSAr was used instead of carboxylic acids in the cathode.近年極めて微小な電子デバイスの創製を目的とした研究開発が盛んになされているが,微小領域における温度センシング法が欠如している.そこで,本研究では,単一分子スケール,すなわちサブnmオーダーのごく微小領域の温度を計測できる手法の開発を目指した.始めに構造が均一で比較的単純なポリマーを試料として用い,単一分子の伝導度の計測法を開発するとともにその伝導機構を理論的検証により明らかにした.さらに,温度応答性ポリマーの温度応答性を反映した伝導度変化を計測することに成功した.Recently, significant effort has been devoted to the development of tiny electronic devices. However, very limited techniques are available to measure local temperatures. The present project was performed to develop a novel methodology to evaluate surface temperature at the single-molecule level. We first established the method to quantify the single-molecule conductance of relatively simple polymer as a model system. The electron transport mechanism was theoretically discussed. Furthermore, we found that the single-molecule conductance of temperature-responsive polymer depends on temperature, which provides a useful means to evaluate surface temperature at the single-molecule level.珪藻の形成するシリカ被殻は現在の微細加工技術では合成不可能なナノパターン構造を有する.本研究では被殻のナノパターン形成を制御するタンパク質を明らかにすることを目的とした.珪藻の被殻はシリカ沈着小胞と呼ばれる細胞内小器官で形成される事が知られているため,被殻形成の場であるシリカ沈着小胞を分離し,小胞内および小胞膜上に存在するタンパク質を網羅的に解析することを目指した.また,異なるパターンの被殻を有する珪藻の遺伝子情報の比較,およびシリカ被殻局在タンパク質の解析から,パターン形成に関与している可能性がある被殻形成関連タンパク質を同定した.Diatoms possess silica cell wall with nano-pattern structure, which are impossible to prepare by current microfabrication techniques. In order to identify proteins regulating nano-pattern formation in diatoms, we aimed to isolate silica deposition vesicles (SDVs) for proteomic characterization. Furthermore, proteins which may be involved in silica cell wall formation were identified by comparative transcriptomic analysis of diatoms with different cell wall structures and proteomic analysis of silica cell wall-associated proteins.24西野 智昭Tomoaki NISHINO根本 理子Michiko NEMOTO単分子温度計測法の開発とグラフェン熱伝導への展開 (2016年採択)Development of Single-Molecule Thermometry and Application to Thermal Conduction in Graphene(Project 2016)シリカ沈着小胞の解析に基づく生物によるシリカナノパターニング機構の解明 (2016年採択)Analysis of the silica deposition vesicle towards an understanding of biosilica nano-pattern formation (Project 2016)旭硝子財団 助成研究成果報告(2019)

元のページ  ../index.html#28

このブックを見る