旭硝子財団助成研究成果報告2019
41/88

yrammuS 要概the overall reaction. In this study, we focused on oxides of transition metals such as Mn, Co, and Ni, and car-ried out the research for the development of highly active oxygen evolution catalysts by precise spatial con-trol of oxide clusters. As a result, we succeeded in the development of hybrid catalysts combining inorganic materials and organic molecules as highly active water splitting catalysts. In addition, it was possible to ob-serve the electronic states and structures in the catalysts by operand XAFS measurements and to clarify the reaction mechanism.SIBはLIBに代わる電池として注目されている.この電池の性能向上には負極の開発が重要である.LFSCはSIB負極候補材である.LFSC中のNaの化学拡散係数DchemをLIBにおけるLiの化学拡散係数Dchemの時と同じ手法,同じ炭素試料で見積もった.800℃焼成LFSCのDchem値は約10-9cm2/secであった.Dchem値はLFSC表面の性質に依存した.効果的な表面改質により炭素表面におけるNa吸蔵/放出反応速度は増大した.表面改質を施すと最も大きなDchem値は約10-8cm2/secとなった.詳細なNa吸蔵/放出反応の機構を明らかにするため,電気化学的インピーダンス測定を行った.結果から,表面改質により電荷移動抵抗が減少することがわかった.10-8cm2/secというNaのDchem値は,LFSCにおける真の拡散係数に迫る値であることがわかった.SIB has attracted attention as a substitute of LIB. In order to improve battery performance, negative electrodes play an important role. LFSC has been the target of study as SIB's negative electrode material. We estimated Na chemical diffusion coefficient Dchem in LFSC using the same approach and samples of previous report on LIB. The Dchem value we obtained with LFSC fired at 800 ºC was about 10-9cm2/sec. The Dchem values depended on the nature of LFSC's surface. The effective surface modification promoted Na insertion/extraction reaction rate on the carbon surface. The largest Na Dchem value after surface modification was 10-8cm2/sec. In order to investigate the detailed mechanism of Na insertion/extraction reaction, electrochemical impedance spectroscopy was adopted. Obtained results suggested that the modification realized a considerable decrease of the charge transfer resistance. The Na Dchem value (10-8cm2/sec) was close to the true Na D value in LFSC.鈴木 純二31Junji SUZUKIi電極材中のナトリウム移動速度評価による高出力ナトリウムイオン二次電池負極材の開発 (2017年採択)Development of high power sodium ion battery by estimation of sodium diffusion rate in negative electrode materials(Project 2017)37Rep. Grant. Res., Asahi Glass Foundation (2019)

元のページ  ../index.html#41

このブックを見る