yrammuS 要概植村 一広金属結合で介した単一次元鎖磁石の創製21Kazuhiro UEMURA北浦 良22Ryo KITAURA(2020採択)Syntheses and characterization of single chain magnets consisting of metal-metal bonds(Project 2020)原子層の精密合成法の開発に基づくサブ10 nmチャンネルデバイスの創製(2020採択)Precise growth of atomic layers for ultra-short channel devices(Project 2020)33Rep. Grant. Res., Asahi Glass Foundation (2022)複数種の金属が規則的に金属結合で並んだ異種金属一次元鎖錯体は,2種類の金属錯体間のdz2軌道でのHOMO-LUMO相互作用を考慮して,合理的に合成することができる.本研究では,単一次元鎖磁石の創製を目指し,2種類の常磁性金属錯体を繋ぎ,金属結合を介した強磁性的相互作用の発現を目的とした.酢酸ルテニウムおよび酢酸ロジウムと,5つの不対電子がマンガン上に局在化する白金-マンガン三核錯体を混合して一次元鎖化を試みたところ,ロジウム,白金,マンガンの3種類の金属が規則的に並んだものが合成でき,金属結合を介した反強磁性的相互作用を確認した.また,アセトアミダートでトランス架橋された白金-第一遷移金属三核錯体は,それ自身で一次元鎖化し,強磁性的相互作用することがわかった.Heterometallic one-dimensional chains, where multiple types of metals are regularly aligned with metal–metal bonds, can be rationally synthesized by utilizing the HOMO–LUMO interaction at the dz2 orbital be-tween the two kinds of metal complexes. The objective of this study is the ferromagnetic interaction of para-magnetic metal complexes through the metal–metal bonds, toward a single chain magnet. Mixing ruthenium acetate or rhodium acetate with a platinum-manganese trinuclear complex containing five unpaired electrons on manganese atoms afforded an one-dimensional chain, where three kinds of metal, rhodium, platinum, and manganese, were regularly aligned, showing antiferromagnetic interactions through the metal–metal bonds. It was also clarified that the acetamidate trans-bridged Pt–M–Pt (M = first row transition metal) trinuclear com-plexes are one-dimensionally aligned showing ferromagnetic interactions.本研究では,独自の結晶成長法をもちいたナノスケールの二次元半導体の構造制御によって,新たな機能を付与した新奇二次元半導体を生み出す.とくに,接合幅が10ナノメートル以下の二次元接合構造に着目し,それらを用いて超極短チャンネルトランジスタの実証をはじめとする新たな光電子機能の開拓に挑んだ.上記の研究を通して,接合幅が原子1つ分の超極微細接合構造を初めて実現することができたことに加え,接合構造に特徴的な光学特性を見出すことにも成功した.現在,超極短チャンネルデバイスの実証に向けたデバイス作製プロセスの開発を進めており,こちらについても近い将来何らかの結果が得られる見込みである.In this research, we have developed a method to control the structure of nanoscale two-dimensional semicon-ductors using a unique crystal growth method. Our purpose is to create novel two-dimensional semiconduc-tors, in particular two-dimensional nanoscale lateral superlattice, with novel optoelectronic properties. In this work, we realized a two-dimensional junction structure with a junction width of fewer than 10 nanometers, and we have worked on the exploration of new optoelectronic properties, including demonstrating an ultra-short channel transistor. As a result, in addition to realizing for the first time an ultrafine junction structure with a junction width of one atom, we also succeeded in finding optical properties characteristic of the junc-tion structures. We are currently developing a device fabrication process to demonstrate ultra-short channel
元のページ ../index.html#37