旭硝子財団 助成研究成果報告(2023)最先端の細胞工学技術であるラボオンチップや再生医療では,生細胞を任意の場所に簡単に接着できる技術が求められている.細胞接着に適した材料は多様であるため,細胞-基質,細胞-細胞接着技術は簡便かつ汎用性が高く,迅速かつ特異的に架橋でき,多様な相手に対応できるように設計する必要がある.細胞表面に生体直交反応を利用して,タンパク質や低分子との共有結合を生成する方法は確立されているが,細胞-基材や細胞間を架橋する方法は報告例が少ない.本研究では,独自の高速クリック反応を用いた細胞架橋反応に基づく新たな細胞接着技術を開発した.In cutting-edge cell engineering technologies such as lab-on-a-chip and regenerative medicine, a technique for easily attaching living cells to any desired location is required. As materials suitable for cell adhesion are diverse, cell-substrate and cell-cell adhesion technologies need to be designed to be simple and versatile, al-lowing for rapid and specific crosslinking, and able to adapt to a wide range of partners. While methods uti-lizing bioorthogonal reactions to generate covalent bonds with proteins or small molecules on the surface of cells have been established, there are few reported methods for crosslinking cells to substrates or between cells. In this study, we developed a novel cell adhesion technique based on a proprietary high-speed click re-action for cell crosslinking.近年の腸内細菌研究の発展に伴い,様々な病態と腸内細菌が密接に関与することが科学的根拠に基づいて明らかにされている.その中で,腸内細菌を制御する最も重要な因子として食事が注目を集めており,食事と腸内細菌の相互作用が,生体側のエネルギー代謝調節において重要な役割を果たすことが示唆されている.食用油の質的な違いによって誘導される腸内環境変化が生体エネルギー代謝調節に直接的な関与を解明することは,我々の食習慣の見直しやQOL (Quality of life)の向上に寄与する.さらに,食事―腸内細菌の相互作用を標的とした食事介入などの新たな代謝性疾患に対する治療法の確立に寄与することが期待される.Recently, with the development of research on gut microbiota, it has been clarified on the basis of scientific evidence that gut microbiota is closely involved in various pathological conditions. Diet has been attracting attention as the most critical factor regulating gut microbiota, suggesting that the interaction between diet and gut microbiota plays a vital role in the regulation of energy homeostasis. The involvement of gut microbial environment changes induced by qualitative differences in dietary lipids directly in the regulation of energy homeostasis contributes to the improvement of our health and quality of life. Additionally, it is expected to contribute to the establishment of new therapies for metabolic diseases, such as dietary interventions targeting diet-gut microbiota interactions.36寺 正行24Masayuki TERA宮本 潤基25Junki MIYAMOTOケモレジリエンスを基盤としたガラス基材への生細胞固定法(2021採択)Development of live cells immobilization onto the glass plate through chemo-resilience(Project 2021)食由来代謝物が宿主のエネルギー代謝調節に及ぼす影響(2021採択)Gut microbial metabolites derived from diet and host energy homeostasis(Project 2021)
元のページ ../index.html#40