旭硝子財団助成研究成果報告2024
31/96

78田代 省平Shohei TASHIRO細川 千絵Chie HOSOKAWAプロトン共役多電子移動とキラルねじれ反転運動が同期する白金三核ナノマシン錯体の合成(2021採択)Synthesis of trinuclear platinum nano-machine complexes showing chiral twist inversion motion synchronized with proton-coupled electron transfer (Project 2021)光と神経細胞との相互作用による神経伝達過程の時空間制御(2021採択)Spatio-temporal control of neuronal transmission by interactions between laser and neurons(Project 2021)27細胞分裂時に重要な役割を果たすことを見出した.さらに本現象をもとに,筋幹細胞の機能維持方法の開発を目指した.Skeletal muscle possesses high regenerative capacity to repair damaged myofibers. It has been thought that muscle-resident stem cells - called muscle satellite cells - sense biophysical forces to be differentiated into myogenic myoblasts, which fuse with each other to form new myofibers. This regenerative process is crucial not only for muscle functions as a locomotive organ but also for maintaining individual homeostasis; howev-er, the molecular mechanisms underlying muscle regeneration processes remain to be elucidated. We previ-ously reported that a mechanosensitive ion channel PIEZO1 is exclusively expressed in muscle satellite cells. In this study, we generated muscle satellite cell-specific Piezo1-deificient mice, and found that PIEZO1 acts as a main mechaosensor during muscle regeneration. Moreover, based on these our findings, we have sought to develop a strategy for maintaining the stemness of muscle satellite cells.本研究では,プロトンによって駆動・制御できる新たな分子マシンを開発することを目的として,ねじれ構造を有する金属三核ナノマシン錯体を合成し,そのねじれ反転運動を評価した.まず,合成条件の最適化によって強く・弱くねじれたナノマシン錯体の二種異性体を選択的に合成した.次に,両者のねじれ反転速度を定量的に評価したところ,弱くねじれたナノマシン錯体は素早く反転した一方で,強くねじれたナノマシンでは反転運動を観測できなかった.この反転運動の違いを分子構造に基づいて考察したところ,両者のねじれ異性体におけるアミンプロトンの配置(アミン窒素の立体配座)の違いが反転速度に大きな影響を与えることが示唆された.The aim of this study was to develop new proton-driven/controlled molecular machines by synthesizing twisted trinuclear nanomachine complexes and evaluating their inversion motion. First, by optimizing the re-action conditions, two isomeric nanomachine complexes with a tightly or loosely-twisted structure were se-lectively synthesized. We then quantitatively evaluated their inversion rate and found that the loosely-twisted nanomachine complex inverts quickly, whereas the tightly-twisted isomer does not. The difference in inver-sion kinetics was discussed based on their molecular structure, suggesting that the difference in the position of amine protons (configuration of amine nitrogen atoms) in the two isomers has a significant effect on the inversion rate.神経回路網ではシナプス結合を介して情報伝達を行い,特定の神経細胞集団が同期的に発火する機能的な結合を保持している.本研究では,レーザー光と神経細胞との相互作用により神経細胞を高精度かつ一過的に操作し,細胞機能を時空間的に制御する手法の開発に取り組んだ.集光フェムト秒レーザーを単一神経細胞に照射すると,多光子吸収に基づいて細胞膜に一過性の微小穿孔が生じて細胞外イオンが

元のページ  ../index.html#31

このブックを見る