旭硝子財団助成研究成果報告2024
49/96

大宮 寛久43Hirohisa OHMIYA有機ホウ素の直接光励起を活用したケミカルバイオロジー研究(2023採択)Chemical Biology Based on Direct Photoexcitation of Borate(Project 2023)45発光化する技術を見出した.今後,本手法を応用した2D高発光性物質としての利用展開が期待される.Recently, sub-nanometer-thick inorganic materials (e.g., graphene and 2D semiconductors) have attracted much attention. These materials have the potential to contribute to unprecedented physical properties through the electron confinement effect, downscaling of electronics, and generation of transparent electronic devices. On the other hand, the means to modulate the physical properties in these 2D materials are not well devel-oped. In this study, we have found a single technique to make MoS2, MoSe2, WSe2, and WS2, known as rep-resentative 2D materials, highly luminescent by a single method. The analysis indicates a distortion of the 2D inorganic materials by the process, which is expected to be a method to tune fragile materials in the future.研究者は,これまで実現困難であったアセチルコリンをケージド化する手法を開発し,生細胞条件およびハエの脳を用いたex vivo条件で自在にアセチルコリン濃度を制御することに成功した.ケージド化合物は,生理活性化合物に光活性化可能な保護基の連結により一時的に不活化した分子で,まさにカゴに入れられたような状態である.光を照射することで,生理活性化合物が作用する時空間を制御できるため,この技術は細胞機能発現の機構解明に幅広く利用されている.一方で,ケージド化合物を作る際に汎用される光活性化可能な保護基は,その連結に水酸基やカルボキシル基あるいはアミノ基といった官能基が必要となる.つまり分子構造にこれらを持たない生理活性化合物はケージド化できないため,構造に制限があった.本研究では,可視光により炭素–ホウ素結合が切断されて炭素ラジカルが生じる有機ホウ素化合物を活用することで,分子骨格上の炭素を起点としたケージド化法を開発した.炭素は全ての有機化合物に含まれるため,従来の構造制限を取り払うと期待される.Photo-caged methodologies have been crucial in understanding how pharmacologically active molecules function at the cellular level. These methodologies use a removable unit triggered by light to control the ex-pression of bioactive compounds, leading to a rapid increase in their concentration near the target cell. How-ever, current caging techniques are limited by the requirement for specific heteroatom-based functional groups to cage the bioactive compound, which restricts the types of molecules that can be caged. Our team has developed a groundbreaking methodology that allows caging/uncaging on carbon atoms using a unit fea-turing a photo-cleavable carbon-boron bond. This process involves installing a CH2-B group on the nitrogen atom, which assembles an N-methyl group protected with a removable unit that can be triggered by light through carbon-centered radical generation.With this radical caging strategy, we have successfully caged pre-viously uncageable bioactive molecules, including acetylcholine, which is an endogenous neurotransmitter lacking general labeling sites. Caged acetylcholine serves as an unconventional tool for opto-pharmacology, allowing us to elucidate neuronal mechanisms by precisely regulating acetylcholine localization through pho-to-induced uncaging. Our methodology opens up new possibilities for studying the function of bioactive mol-ecules with previously limited caging options, providing insights into cellular mechanisms through precise photo-regulation of their localization.

元のページ  ../index.html#49

このブックを見る