旭硝子財団助成研究成果報告2024
52/96

48林 悠48Yu HAYASHI桶葭 興資多糖の非平衡環境下における時空間マター49Kosuke OKEYOSHI乳幼児期の睡眠の制御機構と脳発達における役割の解明(2021採択)Analyses of the mechanisms of infant sleep and its roles in brain maturation(Project 2021)(2021採択)Spatio-temporal matter of polysaccharides in non-equilibrium environment(Project 2021)conducted using U-tubes, with the P4MP1 film in the center and different pure solvents poured into the left and right sides of the U-tubes. As a result, we found a large change in the liquid surface position and a phe-nomenon of preferential permeation of one of the solvents by a macroscopic amount. However, examination of the composition of the left and right sides showed that the film was not semipermeable, but permeable to both solvents. Nevertheless, preferential permeability was visibly observed, and we conducted U-tube experi-ments with various combinations of solvents to understand the phenomena.レム(急速眼球運動)睡眠や徐波睡眠は,産まれた直後に多く,成長や加齢に伴い減少することから,脳発達に重要である可能性がある.代表的な発達障害である自閉スペクトラム症でしばしば,睡眠の異常が見られることも,この可能性を支持する.本研究では,乳幼児期に豊富なレム睡眠や徐波睡眠に関して,その制御機構の解明に取り組み,複数の神経回路・脳部位の特定に成功した.さらに,特定の睡眠ステージを人為的に操作できるマウスの開発により,乳幼児期の睡眠が特定の脳発達のプロセスに関わる可能性についても,エビデンスを得ることに成功した.さらに,発達障害のモデルマウスにおいても,レム睡眠やノンレム睡眠の異常を見出すことに成功した.REM sleep and slow wave sleep may be important for brain development because they are abundant immedi-ately after birth and decrease with growth and aging. The fact that sleep abnormalities are often observed in autism spectrum disorders, a typical developmental disorder, also supports this possibility. In this study, we worked to elucidate the regulatory mechanisms of REM and slow-wave sleep, which are abundant in infancy, and succeeded in identifying multiple neural circuits and brain regions. Furthermore, by developing mice in which specific sleep stages can be artificially manipulated, we have succeeded in obtaining evidence that sleep in infancy may be involved in specific brain developmental processes. Furthermore, we succeeded in finding abnormalities in REM and non-REM sleep in a mouse model of developmental disorders.自然界の生体組織は常に乾燥環境に直面しながらも,幾何学構造を形成して機能的に適応する.特に,多糖は天然高分子として多様であり,水との共生の歴史が長い.多糖水分散液が有限空間の乾燥環境下に在ると「界面分割現象」をみせる.乾燥界面でミクロにもマクロにも形成される空間パターンは,実際の生体組織が非平衡状態で示す幾何学構造化と強く類似し,まさに粘性流体の散逸構造である.この現象の時空間的理解は,ソフトマテリアルの新たな設計基軸としてだけでなく,自然法則に従った生体組織の幾何学化の解明も期待できる.Living organisms in nature form geometric structures and adapt functionally even though they are constantly faced with dry environments. In particular, polysaccharides are diverse as natural polymers and have a long history of symbiosis with water. Focusing on this, we have discovered that polysaccharide aqueous disper-sions exhibit “meniscus splitting phenomenon” when they exist in a dry environment in a finite space. The

元のページ  ../index.html#52

このブックを見る